Discipline: Actual problems of chemistry of polymer composites

Lecture 9.

Theme: Plasticization of Polymer Composites: Types, Methods, Thermodynamics

Objective:

To understand the **concept, types, and methods of plasticization** in polymer composites, and to explore the **thermodynamic principles** underlying plasticization.

Key Questions:

- 1. What is plasticization in polymer composites?
- 2. What are the types of plasticizers and plasticization methods?
- 3. How does plasticization affect polymer composite properties?
- 4. What thermodynamic factors govern the plasticization process?
- 5. How are plasticizers selected for specific polymer composites?

Lecture Content:

• Definition of Plasticization:

- Plasticization is the **process of increasing the flexibility, ductility, and processability** of polymer composites by adding a plasticizer.
- Plasticizers are low-molecular-weight or oligomeric compounds that reduce intermolecular forces in the polymer matrix, allowing chains to move more freely.

• Types of Plasticizers:

1. Primary (External) Plasticizers:

- Added during processing to enhance flexibility and workability.
- Examples: phthalates, adipates, citrates.

2. Internal Plasticizers:

- Incorporated **chemically into the polymer chain** during polymerization.
- Permanent effect on flexibility without migration.

3. Reactive Plasticizers:

 Participate in chemical reactions with the polymer, forming bonds. • Improve flexibility while maintaining durability.

Methods of Plasticization:

- Physical Blending: Mixing polymer with plasticizer under heat or shear.
- **Chemical Modification:** Covalent bonding of plasticizer moieties into polymer chains.
- Solvent-Induced Plasticization: Using solvents to temporarily reduce polymer viscosity for processing.

• Thermodynamics of Plasticization:

- o Governed by the interactions between polymer and plasticizer molecules.
- Free energy of mixing (ΔG_{mix}): Must be negative for spontaneous plasticization.

 $\Delta G \text{ mix} = \Delta H \text{ mix} - T \Delta S \text{ mix}$

- ΔH_mix: enthalpy of mixing (interaction energy)
- ΔS_mix: entropy of mixing (increased chain mobility)
- Plasticizer reduces glass transition temperature (Tg) by increasing chain mobility.
- Compatibility between polymer and plasticizer is critical to prevent phase separation.

• Effects on Polymer Composites:

- o Increased flexibility, elongation, and toughness.
- o Reduced brittleness and stiffness.
- o Enhanced **processability** during molding, extrusion, or film formation.
- Potential drawbacks: plasticizer migration, reduced thermal stability, decreased mechanical strength.

• Selection Criteria for Plasticizers:

- Compatibility with polymer matrix
- o Desired flexibility and mechanical properties
- o Thermal and chemical stability
- o Non-toxicity for food, medical, or consumer applications

Applications:

- PVC composites for flexible tubing, films, and cables.
- $_{\circ}$ Rubber and elastomer composites for seals and gaskets.
- Biodegradable polymer composites in medical devices.

Key Short Theses:

- 1. Plasticization increases flexibility and processability of polymer composites.
- 2. Types: primary (external), internal, and reactive plasticizers.
- 3. Methods include physical blending, chemical modification, and solvent-induced plasticization.

- 4. Thermodynamics: plasticization requires **favorable free energy of mixing** and polymer-plasticizer compatibility.
- 5. Plasticizers reduce glass transition temperature (Tg) and improve chain mobility.
- 6. Effects: enhanced flexibility, toughness, and processability; potential risks include migration and reduced thermal stability.
- 7. Selection of plasticizers depends on polymer type, intended application, and performance requirements.

Control Questions:

- 1. Define plasticization in polymer composites.
- 2. What are the main types of plasticizers and their differences?
- 3. Describe three methods of plasticization.
- 4. How does plasticization affect the glass transition temperature?
- 5. What thermodynamic factors govern plasticization?
- 6. What are the main benefits and potential drawbacks of plasticization in composites?
- 7. How should plasticizers be selected for a specific composite application?

Recommended references

Main literature:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Semchikov Yu.D. High-molecular compounds: Textbook for universities. Moscow: Academy, 2003, 368.
- 4. S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala. Polymer composites. Wiley-VCH, 2012. 829 p.
- 5. Irmukhametova G.S. Fundamentals of polymer composite materials technology: textbook for universities; Al-Farabi Kazakh National University. Almaty: Kazakh University, 2016. 175 p.

Additional literature:

1. Polymer composite materials (part 1): a tutorial / L.I. Bondaletova, V.G. Bondaletov. - Tomsk: Publishing house of Tomsk Polytechnic University, 2013. - 118 p.

- 2. Polymer composite materials: structure, properties, technology. Edited by Berlin A.A. St. Petersburg, Publishing house "Profession", 2008. 560 p.
- 3. Polymer composite materials: structure, properties, technology: a tutorial / M.L. Kerber et al.; under the general editorship of A.A. Berlin. St. Petersburg: Profession, 2009.- 556, [4] p.
- 4. Bataev, A.A. Composite materials. Structure, production, application: a tutorial. manual / A. A. Bataev, V. A. Bataev. M.: Logos, 2006. 397, [3] p. (New University Library).